Effect of gold nanoparticle attached multi-walled carbon nanotube-layered indium tin oxide in monitoring the effect of paracetamol on the release of epinephrine.

نویسندگان

  • Rajendra N Goyal
  • Anoop Raj Singh Rana
  • Md Abdul Aziz
  • Munetaka Oyama
چکیده

A gold nanoparticle attached multi-walled carbon nanotube-layered indium tin oxide (AuNP/MWNT/ITO) electrode has been used for monitoring the effect of paracetamol (PAR) on the release of epinephrine (EPI) in human urine. The modified electrode shows an excellent electrocatalytic activity for the oxidation of EPI and PAR with acceleration of electron transfer rate as compared to MWNT/ITO and AuNP/ITO. An apparent shift of the oxidative potential towards less positive potential with a marked increase in peak currents is observed in square wave voltammetry at AuNP/MWNT/ITO electrode. The calibration curves for the simultaneous determination of PAR and EPI showed an excellent linear response, ranging from 5.0×10(-9) mol L(-1) to 80.0×10(-9) mol L(-1) for both the compounds. The detection limits for the simultaneous determination of PAR and EPI were found to be 46×10(-10) mol L(-1) and 42×10(-10) mol L(-1) respectively. The proposed method has been successfully applied for the simultaneous determination of PAR and EPI in human urine. It is observed that gold nanoparticles attached with multi-wall carbon nanotube catalyze the oxidation of EPI and PAR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Certain Electrochemical Nanosensor Based on Functionalized Multi-Walled Carbon Nanotube for Determination of Cysteine in the Presence of Paracetamol

The modified glassy carbon electrode (GCE) was prepared with 6-amino-4-(3,4-dihydroxyphenyl)-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (pyrazole derivative (AMPC)) and functionalized multi-walled carbon nanotubes. In this research, electrocatalytic activity of nanocomposite (AMPC/MWCNTs) has been studied by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronoa...

متن کامل

Structural and optical properties of ZnO nanorods by electrochemical growth using multi-walled carbon nanotube-composed seed layers

We reported the enhancement of the structural and optical properties of electrochemically synthesized zinc oxide [ZnO] nanorod arrays [NRAs] using the multi-walled carbon nanotube [MWCNT]-composed seed layers, which were formed by spin-coating the aqueous seed solution containing MWCNTs on the indium tin oxide-coated glass substrate. The MWCNT-composed seed layer served as the efficient nucleat...

متن کامل

The effect of small scale on the vibrational behavior of single-walled carbon nanotubes with a moving nanoparticle

In this paper, free and forced vibration of simply-supported Single-walled carbon nanotube is investigated under the moving nanoparticle by considering nonlocal cylindrical shell model. To validate the theoretical results, modal analysis of nanotube is conducted using ANSYS commercial software. Excellent agreement is exhibited between the results of two different methods. Furthermore, the dynam...

متن کامل

Multi-Walled Carbon Nanotube-Assisted Electrodeposition of Silver Dendrite Coating as a Catalytic Film

A multi-walled carbon nanotube (MWCNT)-coated indium tin oxide (ITO) slide was used as a platform for the growth of a silver dendrite (Ag-D) film using cyclic voltammetry. The particular dendritic nanostructures were formed by the diffusion-limited-aggregation model due to the potential difference between the MWCNTs and the ITO surface. The Ag-D-coated ITO film was then used for the catalytic d...

متن کامل

Surfactant and polymer-free electrochemical micropatterning of carboxylated multi-walled carbon nanotubes on indium tin oxide electrodes.

We present a facile micropatterning method that is based on the electrochemically induced deposition of carboxylated multi-walled carbon nanotubes on an indium tin oxide electrode without using surfactants or polymers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytica chimica acta

دوره 693 1-2  شماره 

صفحات  -

تاریخ انتشار 2011